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Abstract: - A dam-break flood model based on a contravariant integral form of the shallow water equations is 

presented. The numerical integration of the equations of motion is carried out by means of a finite volume-

finite difference numerical scheme that involves an exact Riemann solver and which is based on a high-order 

WENO reconstruction procedure. An original scheme for the simulation of the wet front progress on the dry 

bed is adopted. The proposed model capacity to correctly simulate the wet front progress velocity is tested by 

numerically reproducing the dry bed dam-break problem. The model is adopted for the real case study of the 

Rio Fucino lake-dam collapse and subsequent flood wave propagation, downstream of the Campotosto 

reservoir (Italy). 
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1 Introduction 
Rio Fucino dam is a concrete lake-dam that 

functions as a barrier to the Campotosto reservoir 

(Italy), which is among the largest artificial basin in 

Europe. The reservoir is located in the natural 

reserve of Monti della Laga at 1313m of altitude, 

has a surface of 14km
2
 and a water volume of 

300million m
3 
with 35m maximum depth. 

In the context of the safety assessment of the 

existing Italian dams, the Rio Fucino dam is of 

particular interest as it is very close to the Monti 

della Laga seismic fault. This fault, about 30km 

long, is parallel to the dam body and its track is 

distant about 300m from it. The Monti della Laga 

fault may produce seismic events of magnitude 

greater than or equal to 7 and has caused the 

earthquakes that have led to the destruction of 

L'Aquila (6 April 2009) and Amatrice (24 August 

2016). Following these seismic events, more 

attention has been paid to the Rio Fucino dam and to 

the side effects to which the potential interaction 

with the fault can lead to. In fact, the short distance 

of the Monti della Laga fault from the foundation of 

the dam compared to the size of the fault, does not 

preclude the foundations of the dam to be affected 

by the activity of the fault. In the event of fault 

breakage at the surface of the earth, the possible 

damages and the possible breaking of the 

aforementioned Rio Fucino dam would cause flood 

wave propagation along the Rio Fucino River and 

the Vomano valley. On the basis of such 

considerations, it is clear the need to simulate the 

Rio Fucino dam-break and subsequent flood wave 

propagation. 

The flood maps that have been produced several 

decades ago, have been realized by using one-

dimensional numerical schemes that approximate 

the unsteady flow, which takes place downstream of 

the dam, as a succession of steady flows. This 

simplification carries out a qualitative assessment of 

the outflow flow and of the trend over time of the 

flow produced by the flood wave. 

In the most recent literature [3][10][13-15], there 

are methods able to directly simulate the 

propagation of the discontinuity by means of shock-

capturing schemes based on the two-dimensional 

depth-averaged shallow water equations. 

Furthermore, in order to simulate the overflow 

phenomenon over computational domains 

reproducing the river channel complex morphology, 

it is possible to adopt a strategy that numerically 

integrates the equations of motion on generalized 

curvilinear boundary-conforming grids. By using 

boundary-conforming curvilinear coordinates, the 

equations of motion can be written in contravariant 

formulation [1-2][4]. 

In this work we present the study of the flood 

wave propagation downstream of the Rio Fucino 

dam due to the dam-break and subsequent emptying 

of the Campotosto reservoir, in the case of initial 

full supply water level. The equations of motion are 
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numerically solved by means of a finite volume 

numerical scheme that involves an exact Riemann 

solver and is based on a high-order WENO 

reconstruction procedure [5][7]. For the simulation 

of the wet front progress on the dry bed, an original 

wet and dry scheme is used. The capacity of the 

proposed model to correctly simulate the wet front 

progress velocity is tested by numerically 

reproducing the dam-break problem on a dry bed. 

 

 

2 Problem Formulation 
The model is based on the integral contravariant 

formulation of the two dimensional shallow water 

equations. 

Let �� = ���ℎ where ℎ and ��� are, respectively, the 

water depth and the depth-averaged velocity vector 

whose components are defined in the Cartesian 

system of reference. 

We consider the coordinate transformation �� = ��(
�, 
) from the Cartesian coordinate 

system �� to the curvilinear coordinate system 
� 
(note that superscripts indicate the generic 

component and not powers). Let ��(�) = ��� �
�⁄  be 

the covariant base vectors and ��(�) = �
� ���⁄  the 

contravariant base vectors. The covariant and 

contravariant metric coefficients are given 

respectively by ��� = ��(�) ∙ ��(�) and ��� = ��(�) ∙��(�). The Jacobian of the transformation is given by �� = �|���| where | | denotes the determinant of 

the covariant metric coefficients ���. The 

transformation relationships between vector �� in the 

Cartesian coordinate system and its contravariant, ��, and covariant, ��, components in the curvilinear 

coordinate system are given by 

 �� = ��(�) ∙ �� ; �� = ����(�) 
 �� = ��(�) ∙ �� ; �� = ����(�)   (1) 

 

The shallow water equations in contravariant 

formulation read 

 ��
�� + �,�� = 0       (2) 

 ���
�� + �����

� + �	��� �!
 ",� = −�ℎ	���$,� − %�  (3) 

 

where a comma with an index in a subscript stands 

for covariant differentiation, the second term on the 

left-hand side of both equation (2) and (3) is the flux 

term, � is the constant of gravity, −�ℎ	���$,� is 

the source term related to the bottom slope in which $ is the bottom elevation and %� is the bottom 

resistance term. 

The motion equations (2) and (3) are integrated 

over an arbitrary surface element of area ∆', whose 

contour line is (, and are solved in the direction in 

space of a parallel vector field, )*(
�, 
) = �+�(�) ∙��(*), which is normal to the coordinate line on 

which the coordinate line 
� is constant. By 

recalling that by definition )*,� = 0 and that ��(*) ∙ ��(�) = ,*�, the integral expressions of the 

shallow water equations in contravariant 

formulation are 

 

∬ ��
�� .'∆/ + 0 ��1�.(2 = 0     (4) 

 

∬ �+�(�) ∙ ��(*) ��3
�� .'∆/ +  

0 ��+�(�) ∙ ��(*) ����
� + �+�(�) ∙ ��(�)� �!

 " 1�.(2   

= − ∬ �+�(�) ∙ ��(*)4�ℎ	�*�$,� + %*5.'∆/   (5) 

 

A restrictive condition on the surface element of 

area ∆' is now introduced: the surface element of 

area ∆' must be considered as a surface element 

which is bounded by four curves lying on the 

coordinate lines. Since .' = ��.
�.
 and by 

indicating the averaged values of ℎ and �� over the 

surface element of area ∆' as 

ℎ67 = �
∆/ ∬ ℎ��.
�.
∆/  and �̅7� = �

∆/ ∬ �+�(�) ∙∆/��(*)�*��.
�.
, equations (4) and (5) are 

rewritten as 

 
��9:
�� =  

− �
∆/ ∑ <0 �=��.
>∆?@A − 0 �=��.
>∆?@B C=D�    (6) 

 ��67 �
�� = �

∆/ E− ∑=D�   

<0 ��+�(�) ∙ ��(*) �3�@
� + �+�(�) ∙ ��(=)� �!

 " ��.
>∆?@A −
0 ��+�(�) ∙ ��(*) �3�@

� + �+�(�) ∙ ��(=)� �!
 " ��.
>∆?@B C  

− ∬ �+�(�) ∙ ��(*)4�(F − F̅7)	�*�$,� + %*5∆/ .'  

−�F̅7 ∑ <0 �+�(�) ∙ ��(*)$��.
>∆?@A −=D�   

       0 �+�(�) ∙ ��(*)$��.
>∆?@B C 

 + G
 ∑ <0 �+�(�) ∙ ��(*)$��.
>∆?@A −=D�  

       0 �+�(�) ∙ ��(*)$��.
>∆?@B H   (7) 
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in which the Christoffel symbols are absent. ∆
=I 

and ∆
=J indicate the segments of the contour line 

on which 
= is constant and which are located 

respectively at the larger and smaller value of 
= (K 

and L cyclic), F = $ + ℎ is the free surface 

elevation and F̅7 represents the averaged value of F 

on the surface element ∆'. The last three terms on 

the right-hand side of equation (7) are obtained by 

decomposing the source term related to the bottom 

slope on the right-hand side of equation (5) as 

proposed by [16]. 

 

 

3 Problem Solution 
The numerical integration of the equations of 

motion (6) and (7) is carried out by a high order 

upwind WENO (weighted essentially non-

oscillatory) scheme. The computational domain 

discretization is based on a grid defined by the 

coordinate lines 
� and 
 and by the points of 

coordinates 
M� = N∆
� and 
O = P∆
, which 

represent the centers of the calculation cells QM;O = S
MJ� ⁄� 	, 
MI� ⁄� T × S
OJ� ⁄ 	, 
OI� ⁄ T. VW is 

the time level of the known variables, while VWI� = VW + ∆V is the time level of the unknown 

variables. Let us indicate with X(��, �) the right-

hand side of equation (6) and with Y(ℎ, ��, �) the 

right-hand side of equation (7). By integrating 

equations (6) and (7) over ZVW, VWI�[ we get 

 

ℎ67M;O(WI�) = ℎ67M;O(W) − �
∆/ 0 X(��, �).V�\A]

�\     (8) 

 

�̅7�M;O(WI�) = �̅7�M;O(W) − �
∆/ 0 Y(ℎ, ��, �).V�\A]

�\    (9) 

 

Equations (8) and (9) represent the advancing 

from time level VW to time level VWI� of the 

variables ℎ67M;O and �̅7M;O� . The state of the system is 

known at the center of the calculation cells and it is 

defined by the cell-averaged values ℎ67M;O and �̅7M;O� . 

In this paper, the time integration of equations 

(8) and (9) is carried out by means of a third order 

accurate Strong Stability Preserving Runge-Kutta 

method (SSPRK) reported in [11]. The SSPRK 

method can be written in compact form as follows 

 

ℎ67M;O(^) = ℎ67M;O(W)
  ; �̅7�M;O(^) = �̅7�M;O(W)

                 (10) 

 

ℎ67M;O(_) = ∑ <Ω_`ℎM,O(`) + ∆Va_`X ���(`), �(`)"C_J�`D^   

                 (11) 

 

�̅7�M;O(_) =
∑ <Ω_`�̅7M;O� (`) + ∆Va_`Y �ℎ(`), ��(`), �(`)"C_J�`D^   

                 (12) 

 

ℎ67M;O(WI�) = ℎ67M;O(b)
  ; �̅7�M;O(WI�) = �̅7�M;O(b)

             (13) 

 

where c = 1,2,3. See [11] for the Ω_` and a_` 

values. 

For the calculation of the X(��, �) and Y(ℎ,��, �) terms, the numerical approximation of 

integrals on the right-hand side of equations (6) and 

(7) is required. This calculation is based on the 

following sequence 

 

1. Starting from cell averaged values, the point 

values of the unknown variables at the centre of 

the contour segments which define the 

calculation cells are computed by means of 

WENO reconstructions. Two WENO 

reconstructions defined on two adjacent cells 

are used to get two point values of the unknown 

variables at the centre of the contour segment 

which is common with the two adjacent cells. 

 

2. The point values of the unknown variables at 

the centre of the contour segments are 

advanced in time by means of the so-called 

exact solution of a local Riemann problem, 

with initial data given by the pair of point-

values computed by two WENO 

reconstructions defined on the two adjacent 

cells. In accordance with the procedure 

proposed by [9], all Riemann problems are 

solved in a locally valid orthonormal basis. 

This orthonormalization allows to solve 

Cartesian Riemann problems that are devoid of 

metric terms. 

 

3. The spatial integrals that define the X(��, �) 

and Y(ℎ, ��, �) terms are numerically 

approximated by means of a high order 

quadrature rule, starting from point values of 

the dependent variables computed at the 

previous step. 

 

 

3.1 The WENO reconstructions 
The WENO reconstructions of the point values 

of the free surface elevation F are here reported. Let 

us indicate by (F)M,O the cell averaged values of the 

free surface elevation F over the cell QM,O. We also 

indicate by (F)MI�/,O and (F)MJ�/,O, respectively, 
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the two point values of F at the center of the 

segments over which the coordinate 
� is constant 

and that are placed on the side of increasing and 

decreasing 
�. For the sake of brevity, we will only 

present the reconstruction technique of these point 

values. Two different steps are involved in this 

reconstruction: 

 

- step 1: reconstruction of the line average values (F+)M,O along the coordinate 
, starting from the 

cell average values (F)M,O 

 

(F+)M,O = �
∆?] 0 F(
�, 
).
�?hB]/!,i]

?hB]/!,i]              (14) 

 

- step 2: reconstruction of the point values (F)MI�/,O 

and (F)MJ�/,O along the coordinate 
, starting 

from the line average values (F+)M,O. 

 

    1)  Step 1 

The value of (F+)M,O is reconstructed by using an 

interpolant polynomial %M,O(
) which is defined in 

the cell QM,O and by using the relation (F+)M,O =%M,OS
OT. According to the formulation of the 

WENO schemes in the work of [7], the polynomial %M,O(
) is given by a convex combination of three 

different 2nd order polynomials, jM,OI_(
) =kM,OI_(
) + lM,OI_(
) + mM,OI_ with c = −1,0,1. 

The weights of this convex combination are a 

function of the linear weights and the indexes of 

smoothness [6]. As suggested in [6], the norm ( of 

the derivatives of the polynomials jM,OI_(
) on cell QM,O is used in order to compute the indexes of 

smoothness. The linear weights are chosen in such a 

way that the required accuracy is satisfied. The 

Jacobian terms may affect the weights evaluated in 

the WENO reconstruction procedure, even when 

imposing the free stream value. As suggested in [8], 

the Jacobian terms are not included in the 

reconstruction procedures and, therefore, the cell 

averaged value is approximated by 

 (F)M,OI_I` = �
∆?!  

0 n �
∆?] 0 F(
�, 
).
�?hA]!,iAo]

?hB]!,iAo] p .
?h,iAoAqA]/!!
?h,iAoAqB]/!!        (15) 

 

By imposing 

 

jM,OI_(
) = �
∆?] 0 F(
�, 
).
�?hA]!,iAo]

?hB]!,iAo]                (16) 

and by introducing (16) into (15), the above 

condition becomes  

 

(F)M,OI_I` = �
∆?! 0 4jM,OI_(
)5.
?h,iAoAqA]/!!

?h,iAoAqB]/!!      (17) 

 

By introducing the analytical solution of the 

integral in (17), three independent systems are 

obtained (c = −1,0,1), each of them is formed by 

three linear equations (r = −1,0,1), which permit 

the computation of the values of the polynomial 

coefficients kM,OI_, lM,OI_, mM,OI_. Starting from these 

values and the values of the smoothness indexes, it 

is possible to calculate %M,O(
) and, consequently, 

to evaluate (F+)M,O. 

 

    2)  Step 2 

In the second step, the passages shown in the first 

step are carried out along the coordinate 
�. Starting 

from the line average values (F+)M,O, the two point 

values of the free surface elevation at the centre of 

the faces over which the coordinate 
� is constant 

and that are placed on the side of increasing and 

decreasing 
� are computed by 

 (F)MI�/,O = %M,OS
MI�/� T ; (F)MJ�/,O = %M,OS
MJ�/� T 

 

                 (18) 

 

3.2 The wet and dry advancing solution 
In the numerical integration of the equations of 

motion (6) and (7) a particular treatment of the 

advancing solution of the shallow water equations 

on dry bed (wet and dry front) is requested. In order 

to simulate the wet and dry front, the following 

original procedure is proposed. 

For the sake of brevity the procedure of the wet 

and dry front is exposed referenced to a line which 

is parallel to the curvilinear coordinate line 
. At 

the centre of the segments which separate the dry 

cell QM;O from the wet cell QMJ�;O, point values of the 

unknown variables are reconstructed, by means of 

an asymmetric WENO reconstruction defined on the 

wet cell. For example, at the centre of the segment 

which is the interface between dry cell QM;O and wet 

cell QMJ�;O, WENO reconstructions defined on the QMJ�;O cell lead to the evaluation of the variables 

ℎMJ� ⁄ ;O(W)J
 and ��MJ� ⁄ ;O(W)J

. The advancing in time is 

carried out by means of the exact solution of an 

apposite Riemann problem, with initial data given 

by the pair of point-values computed by the WENO 

reconstruction. It must be noted that the point values 
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of the unknown variables ℎMJ� ⁄ ;O(W)I
 and ��MJ� ⁄ ;O(W)I

 are 

equal to zero because they belong to the dry cell QM;O. 

Let us define s�(W)
 and t�(W)

 as the depth-

averaged components that are respectively normal 

and tangential to the coordinate line 
. By defining ��(�) ����u  and ��() ��u  as the unit vectors which 

are respectively normal and tangential to the 

coordinate line 
 and by recalling the 

transformation relationships, eq. (1), the following 

transformation relations are obtained 

 

s�(W) = �](\)
�	�v]]                 (19) 

 

t�(W) = �](\)
�

v]!√v!! + �!(\)
� ��               (20) 

 

For example, in the point of coordinates S
MJ� ⁄� , 	
OT belonging to the segment that lies on the 

coordinate line 
, which is the interface of cells QMJ�;O and QM;O, the WENO reconstruction lead to the 

definition of the point values of dependent variables 

ℎMJ� ⁄ ;O(W)J
, s�MJ� ⁄ ;O(W)J

 and t�MJ� ⁄ ;O(W)J
. 

Let define as ℎMJ� ⁄ ;O(WI�)∗
, s�MJ� ⁄ ;O(WI�)∗

 and t�MJ� ⁄ ;O(WI�)∗
 the 

solution, at the advanced time level VWI�, of the wet 

and dry Riemann problem defined by the hyperbolic 

homogeneous system of the shallow water 

equations, written in the locally valid orthonormal 

basis, and let yMJ� ⁄ ;O(WI�)∗
 be the propagation velocity of 

the wet and dry front. The exact solution of this 

Riemann problem on the interface between the wet 

cell QMJ�;O and the dry cell QM;O gives 

 

ℎMJ� ⁄ ;O(WI�)∗ = �
G z�

b {s�MJ� ⁄ ;O(W)J + 2 ��ℎMJ� ⁄ ;O(W)J "]!|}
]!
  (21) 

 

s�MJ� ⁄ ;O(WI�)∗ = �
b {s�MJ� ⁄ ;O(W)J + 2 ��ℎMJ� ⁄ ;O(W)J "]!|         (22) 

 

t�MJ� ⁄ ;O(WI�)∗ = t�MJ� ⁄ ;O(W)J
                (23)  

 

yMJ� ⁄ ;O(WI�)∗ = s�MJ� ⁄ ;O(W)J + 2 ��ℎMJ� ⁄ ;O(W)J "]!
                (24) 

 

Let .~.MJ� ⁄ ;O(WI�)
 be the distance of the wet and 

dry front to the interface between the wet cell QMJ�;O 

and the dry cell QM;O. Such distance is given by 

 

.~.MJ� ⁄ ;O(WI�) = .~.MJ� ⁄ ;O(W) +  

  {s�MJ� ⁄ ;O(W)J + 2 ��ℎMJ� ⁄ ;O(W)J "]!| ∆1            (25) 

 

where ∆1 is the time step. Finally, by an inverse 

transformation of the reference system, the solution 

of the Riemann problem in the curvilinear 

coordinate system is evaluated. 

 

 

4 Model validation 
The proposed model is tested in the classical flat-

bed dam-break problem. Two regions are separated 

at � =0m by a wall. In the left region still water 

level of initial depth ℎ^ is present, while the right 

region is dry. The evolution of this initial conditions 

after the removal of the wall, and consequently the 

release of the water, is numerically simulated. 

The solution of the classical flat-bed dam-break 

generated by the instantaneous removal of the wall 

at time V =0 is given by the Ritter solution [12] as 

 

ℎ∗ = �
� �2 − �∗

�∗"
               (26) 

 

�∗ = 
b ��∗

�∗ + 1"                (27) 

 

where ℎ∗ and �∗ are respectively the dimensionless 

water depth and the fluid velocity. 

The analytical solution valid for ℎ∗̂ =1 is 

represented in Figure 1 (solid line) at different 

dimensionless times V∗ = 0.00, 0.07, 0.12 and 0.20. 

The numerical results obtained by the presented 

high-order WENO reconstruction numerical model 

are shown in the same figure (points). The 

numerical results obtained by numerically 

simulating the classical dam-break problem are in 

very good agreement with the analytical solution. 

The flat-bed dam-break test is particularly 

suitable to test the shock-capturing properties of the 

solver, highlighting any possible weakness. In fact, 

this test makes it possible to see that the choice of 

the order of accuracy of the numerical scheme is 

critical when simulating the wet and dry 

phenomenon. 

Figure 2 shows the comparison between the 

analytical solution (solid line) and the solution 

obtained by adopting a first order accurate 

numerical scheme (points) at different 

dimensionless times. By observing Figure 2 it is 

possible to see that these numerical results 

significantly differ from the analytical solution. 
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By comparing the first-order accurate solution 

(Figure 2) with the solution obtained by adopting 

the high-order accurate WENO scheme (Figure 1) it 

is possible to deduce that the shock-capturing 

properties of the model are strictly related to the 

choice of the accuracy order of the numerical 

scheme. 

 

 

 
 

Fig. 1: Flat-bed dam-break problem. Comparison between the analytical solution (solid lines) and numerical results 

obtained with the high-order WENO scheme (points) in terms of dimensionless water depth, ℎ∗, and dimensionless fluid 

velocity, �∗, at different dimensionless times V∗ = 0.00, 0.07, 0.12, 0.20. 

 

 
 

Fig. 2: Flat-bed dam-break problem. Comparison between the analytical solution (solid lines) and numerical results 

obtained with the first-order accurate numerical scheme (points) in terms of dimensionless water depth, ℎ∗, and 

dimensionless fluid velocity, �∗, at different dimensionless times V∗ = 0.00, 0.07, 0.12, 0.20. 

 

5 Rio Fucino dam-break simulation 
The proposed model is used to simulate the shock 

wave caused by the instantaneous Rio Fucino dam-

break. Table 1 shows the significant data of the dam 

and of the reservoir as reported by the Operating 

Conditions and Maintenance Template of the dam 

operator. 

 

Table 1: Rio Fucino dam and Campotosto reservoir 

significant data as reported by the Operating Conditions 

and Maintenance Template 

 

Maximum height     49m 

Full supply level     39m 

Crest length     154m 

Capacity     218·10
6
m

3
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The simulation of the shock wave generated by 

the instantaneous Rio Fucino dam-break has been 

carried out in the case in which the initial level 

coincides with the full supply level (see Table 1). 

The computational domain reproduces a wide 

area including the Campotosto reservoir and a 

segment of the Rio Fucino River that stretches out 

over 23.5km downstream the dam. At the end of 

such segment (last 2.3km), the width of the 

computational domain settles to around 1km, in 

such a way to include the areas occupied by the 

buildings included in the town of Montorio al 

Vomano. At the upstream boundary of the 

computational domain a flow closed boundary 

condition has been adopted, while at the 

downstream boundary of the computational domain 

a zero gradient boundary condition is applied once 

the shock-wave front has reached the boundary. The 

above simulation is performed using a curvilinear 

grid which is made up of 25843cells. Figure 3 

shows a detail of such curvilinear grid which 

includes the Campotosto reservoir and the Rio 

Fucino dam. The Manning's coefficient is set to 

0.05m
-1/3

 and the Courant number is set equal to 

0.25. 

  
 

Fig. 3: Curvilinear calculation grid detail. Campotosto reservoir and Rio Fucino dam. 

 

In Figure 4 a detail of the calculation curvilinear 

grid showing the Rio Fucino dam is presented. In 

the same figure, the collapse of the dam and the 

following water flood is shown. The Rio Fucino 

dam-break causes the spillage of about 31.000m
3
 of 

water. 

 

(a)  (b)  
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(c)  (d)  

 

Fig. 4: (a) Curvilinear calculation grid detail showing the Rio Fucino dam at t=0s. Spreading of the shock wave front over 

the Vomano River after the dam failure at (b) t=7.5s, (c) t=30s, (d) t=60s 

 

The numerical results allow us to deduce that the 

shock wave generated as the result of the 

instantaneous Rio Fucino dam-break spreads rapidly 

in the stretch of river downstream of the dam, 

reaching considerable heights in correspondence to 

the houses belonging to the Montorio al Vomano 

municipality. In fact, the time taken by the wave 

front to reach the first houses (about 21km from the 

dam) is about 66minutes and, once these have been 

hit by the shock wave, the maximum water height is 

about 15m. Figure 5 shows the spreading of the 

wave front over the Vomano valley after the dam 

failure. Figure 5 shows how the presented model is 

able to simulate the advancing of the wave front and 

the evolution of the boundaries of the wet area over 

the complex geometries of the stretch of river 

downstream the Rio Fucino dam. In particular, by 

observing Figure 5 it is also possible to notice the 

high degree of irregularity of the computational 

domain corresponding to the sharp bends of the 

river in the area that precedes the considered final 

section. 

In Figure 6 a detail of the spreading of the wave 

front over the Vomano valley after the dam failure 

at the Montorio al Vomano municipality is shown at 

different times. In this area, the Vomano River 

valley floor expands, from a deep valley with steep 

banks, to shallower slopes and broader and gentler 

area. 

 

 

(a)  (b)  
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(c)  (d)  

 

Fig. 5: Spreading of the shock wave front over the Vomano River valley floor after the dam failure. 

Instantaneous elevation of the shock wave at (a) t=62.5min, (b) t=68.5min, (c) t=71.25min, (d) t=73.75min 

 

(a)  (b)  

 

(c)  (d)  

 

Fig. 6: Detail of the spreading of the shock wave front over the Vomano River valley floor after the dam failure. 

Instantaneous elevation of the shock wave at (a) t=62.5min, (b) t=64.5min, (c) t=67.5min, (d) t=73min 
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The numerical results have been used in order to 

realize the flood map downstream of the Rio Fucino 

dam (Figure 7) corresponding to the dam-break and 

subsequent emptying of the Campotosto reservoir, 

in the case of initial full supply water level. By 

observing Figure 7 it can be deduced that, for a full 

supply water level, the dam-break would lead to the 

flooding of a considerable portion of the Montorio 

al Vomano municipality. 

 
 

 
 

Fig. 7: Detail of the flood map downstream of the Rio Fucino dam over the Vomano River valley floor 

 

6 Conclusion 
A dam-break flood model based on a contravariant 

integral form of the shallow water equations has 

been presented. This model is used in order to 

simulate the dam-break phenomenon over 

computational domains characterized by complex 

shapes, in which the advancing in time of the flood 

wave front is carried out by means of an original 

wet and dry scheme. It has been demonstrate that 

the model correctly simulates the wet front progress 

velocity. The presented model is used to simulate 

the shock (flood) wave caused by the instantaneous 

Rio Fucino dam-break. The simulation results make 

it possible to deduce that the shock wave reaches 

considerable water heights in correspondence to the 

houses belonging to the Montorio al Vomano 

municipality. 
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